Ideal Gas Law

METROPOLITAN
Community College

INTRODUCTION

- Ideal Gas Law states that PV=NRT
- $\mathrm{P}=$ Pressure(Pascals)
- $\mathrm{V}=$ Volume(Liters)
- $\mathrm{N}=$ Amount of Gas(Moles)
- $\mathrm{R}=$ Molar Mass $(\mathrm{g} / \mathrm{mol})$
- T=Absolute Temperature of Gas(Kelvin)
- Will Balloons filled with different gases pop at different altitudes?

REFERENCES
Young, Hugh D. Freedman, Roger A. Ford, A Lewis. 2018. Sears and Zemansky's University Physics with Modern Physics $14^{\text {th }}$ edition. India,
Pearson India Education Services.

METHOD

Fill several balloons with various gases to a known pressure \& volume
$\mathrm{P}=107991$ Pascals
$\mathrm{V}=14.83$ Liters
Attach balloons to lifting balloon and film to determine burst altitude
Gases to be used are Oxygen, Air, Nitrogen, \& Argon
Oxygen will contain greatest N , Argon the least
Nitrogen in Green Balloon
Argon in Orange Balloon
Will the heavier gases burst first?

CONCLUSIONS

- Sadly, Oxygen and Air balloons detached from lifting balloon before burst
- Argon burst at 2.67 times greater altitude
- Argon weighs 2.85 times more $\mathrm{g} / \mathrm{mol}$
- As altitude increases, outside pressure decreases
- Volume inside balloon expands until the surface area of balloon reaches maximum
- At this point the balloon's internal pressure increases until it bursts (Approximately: 111991 Pascals)
- It appears that the greater number of Nitrogen molecules caused this change to happen faster than Argon
- Burst altitude corresponds to relative $\mathrm{g} / \mathrm{mol}$
- Nitrogen 14.0067 g/mol
- Initial fill contained 387,313 moles of Nitrogen
- Nitrogen burst at an altitude of 4903.7 Meters
- Argon $39.948 \mathrm{~g} / \mathrm{mol}$
- Initial fill contained 135,897 moles of Argon
- Argon Burst at an altitude of 13091.6 Meters

