INTRODUCTION

- Ideal Gas Law states that PV=NRT
- P=Pressure(Pascals)
- V=Volume(Liters)
- N=Amount of Gas(Moles)
- R=Molar Mass(g/mol)
- T=Absolute Temperature of Gas(Kelvin)
- Will Balloons filled with different gases pop at different altitudes?

REFERENCES

Young, Hugh D. Freedman, Roger A. Ford, A Lewis. 2018. Sears and Zemansky's University Physics with Modern Physics 14th edition. India, Pearson India Education Services.

NITROGEN

- Nitrogen 14.0067 g/mol
- Initial fill contained 387,313 moles of Nitrogen
- Nitrogen burst at an altitude of 4903.7 Meters

NAMES: Connor Yax Phillip Ramirez Nick Pavel

Ideal Gas Law

METHOD

	Fill several balloons with various gases to a known pressure & volume
	P=107991 Pascals
	V=14.83 Liters
)	Attach balloons to lifting balloon and film to determine burst altitude
	Gases to be used are Oxygen, Air, Nitrogen, & Argon
	Oxygen will contain greatest N, Argon the least
	Nitrogen in Green Balloon
	Argon in Orange Balloon
	Will the heavier gases burst first?

- Argon 39.948 g/mol
- Initial fill contained 135,897 moles of Argon
- Argon Burst at an altitude of 13091.6 Meters

METROPOLITAN Community College

CONCLUSIONS

Sadly, Oxygen and Air balloons detached from lifting balloon before burst Argon burst at 2.67 times greater altitude • Argon weighs 2.85 times more g/mol • As altitude increases, outside pressure decreases

Volume inside balloon expands until the surface area of balloon reaches maximum At this point the balloon's internal pressure increases until it bursts (Approximately: 111991 Pascals) • It appears that the greater number of Nitrogen molecules caused this change to happen faster than Argon Burst altitude corresponds to relative g/mol

ARGON